Nemo-like kinase (NLK) acts downstream of Notch/Delta signalling to downregulate TCF during mesoderm induction in the sea urchin embryo.

نویسندگان

  • Eric Röttinger
  • Jenifer Croce
  • Guy Lhomond
  • Lydia Besnardeau
  • Christian Gache
  • Thierry Lepage
چکیده

Studies in Caenorhabditis elegans and vertebrates have established that the MAP kinase-related protein NLK counteracts Wnt signalling by downregulating the transcription factor TCF. Here, we present evidence that during early development of the sea urchin embryo, NLK is expressed in the mesodermal precursors in response to Notch signalling and directs their fate by downregulating TCF. The expression pattern of nlk is strikingly similar to that of Delta and the two genes regulate the expression of each other. nlk overexpression, like ectopic activation of Notch signalling, provoked massive formation of mesoderm and associated epithelial mesenchymal transition. NLK function was found to be redundant with that of the MAP kinase ERK during mesoderm formation and to require the activity of the activating kinase TAK1. In addition, the sea urchin NLK, like its vertebrate counterpart, antagonizes the activity of the transcription factor TCF. Finally, activating the expression of a TCF-VP16 construct at blastula stages strongly inhibits endoderm and mesoderm formation, indicating that while TCF activity is required early for launching the endomesoderm gene regulatory network, it has to be downregulated at blastula stage in the mesodermal lineage. Taken together, our results indicate that the evolutionarily conserved TAK/NLK regulatory pathway has been recruited downstream of the Notch/Delta pathway in the sea urchin to switch off TCF-beta-catenin signalling in the mesodermal territory, allowing precursors of this germ layer to segregate from the endomesoderm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

nemo-like kinase is an essential co-activator of Wnt signaling during early zebrafish development.

Wnt/beta-catenin signaling regulates many aspects of early vertebrate development, including patterning of the mesoderm and neurectoderm during gastrulation. In zebrafish, Wnt signaling overcomes basal repression in the prospective caudal neurectoderm by Tcf homologs that act as inhibitors of Wnt target genes. The vertebrate homolog of Drosophila nemo, nemo-like kinase (Nlk), can phosphorylate ...

متن کامل

Nodal and BMP2/4 pattern the mesoderm and endoderm during development of the sea urchin embryo.

Nodal factors play fundamental roles in induction and patterning of the mesoderm and endoderm in vertebrates, but whether this reflects an ancient role or one that evolved recently in vertebrates is not known. Here, we report that in addition to its primary role in patterning the ectoderm, sea urchin Nodal is crucial for patterning of the endoderm and skeletogenic mesoderm through the regulatio...

متن کامل

A regulatory gene network that directs micromere specification in the sea urchin embryo.

Micromeres and their immediate descendants have three known developmental functions in regularly developing sea urchins: immediately after their initial segregation, they are the source of an unidentified signal to the adjacent veg(2) cells that is required for normal endomesodermal specification; a few cleavages later, they express Delta, a Notch ligand which triggers the conditional specifica...

متن کامل

LvNumb works synergistically with Notch signaling to specify non-skeletal mesoderm cells in the sea urchin embryo.

Activation of the Notch signaling pathway segregates the non-skeletogenic mesoderm (NSM) from the endomesoderm during sea urchin embryo development. Subsequently, Notch signaling helps specify the four subpopulations of NSM, and influences endoderm specification. To gain further insight into how the Notch signaling pathway is regulated during these cell specification events, we identified a sea...

متن کامل

Dynamics of Delta/Notch signaling on endomesoderm segregation in the sea urchin embryo.

Endomesoderm is the common progenitor of endoderm and mesoderm early in the development of many animals. In the sea urchin embryo, the Delta/Notch pathway is necessary for the diversification of this tissue, as are two early transcription factors, Gcm and FoxA, which are expressed in mesoderm and endoderm, respectively. Here, we provide a detailed lineage analysis of the cleavages leading to en...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 133 21  شماره 

صفحات  -

تاریخ انتشار 2006